

MEMORANDUM

To: David Lopez, Senior Planner, City of Fullerton
From: Ace Malisos, Kimley-Horn and Associates, Inc.
Date: January 20, 2026
Subject: Clarification of CEQA Cumulative Air Quality Methodology in Response to SAFER Comment Letter

The purpose of this memorandum is to respond to concerns raised in the Supporters for Environmental Responsibility (SAFER) comment letter dated December 9, 2025, and to clarify the methodology used in the Initial Study/Mitigated Negative Declaration (IS/MND) for the Cedarwoods Fullerton Project (Project or proposed Project) to evaluate cumulative air quality impacts under the California Environmental Quality Act (CEQA).

Summary of SAFER Comment Letter

The SAFER Comment Letter (comment letter) asserts that CEQA requires preparation of an EIR whenever substantial evidence supports a fair argument that a project may result in significant environmental impacts. It emphasizes that this standard sets a low threshold and does not allow the lead agency to weigh conflicting evidence when deciding whether an EIR is required. According to the comment letter, an IS/MND is only appropriate where all potentially significant impacts are clearly reduced to a level of no significance and no substantial evidence remains suggesting a reasonable possibility of a significant effect. The comment letter further notes that courts review this determination *de novo* and resolve doubts in favor of environmental review.

Applying this standard, the comment letter contends that an IS/MND is inappropriate because the Project may cause significant cumulative air quality impacts. It relies on CalEnviroScreen data indicating the project site is located in a highly polluted and environmentally burdened census tract with elevated exposure to diesel particulate matter and particulate matter less than 2.5 microns (PM_{2.5}). The comment letter argues that construction and operational diesel truck activity would add to existing harmful air quality conditions, constituting a potentially significant cumulative impact that must be analyzed and mitigated in an EIR. The December 9, 2025, SAFER comment letter is included as **Attachment A**.

CalEnviroScreen and CEQA

CalEnviroScreen is a screening methodology developed by the California Office of Environmental Health Hazard Assessment (OEHHA) to identify communities disproportionately burdened by multiple sources of pollution and socioeconomic vulnerability. It is a tool used for policy and funding decisions, such as allocating California Climate Investments under Senate Bill 535 and Assembly Bill 1550. It is not designed or intended to serve as an environmental impact analysis tool under CEQA.

Additionally, CEQA cumulative air quality impacts are not appropriately evaluated through comparison to CalEnviroScreen results because CalEnviroScreen is a statewide screening and prioritization tool, not a methodology for determining the significance of cumulative impacts. CalEnviroScreen compiles environmental, health, and socioeconomic indicators to generate relative scores for census tracts statewide, allowing comparison among communities. These scores reflect existing conditions and relative pollution burdens, but they are not expressions of project-related health risk and do not provide quantitative information regarding a project's contribution to cumulative air quality impacts. As a comparative screening tool, CalEnviroScreen does not establish thresholds of significance or provide a basis for determining whether differences between scores represent a cumulatively considerable increase attributable to a specific project.

CEQA Cumulative Air Quality

Cumulative Air Quality

Appendix G of the CEQA Guidelines provides questions to guide significance determinations under each impact area and specifically addresses cumulative air quality impacts in areas where regional emissions already exceed regional thresholds (i.e., non-attainment areas). Appendix G provides the following question addressing non-attainment areas: *Would the Project result in a **cumulatively considerable net increase** of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?* Therefore, it is not just any increase of a criteria pollutant in a non-attainment area that would result in a significant impact. Instead, a project would need to result in a **cumulatively considerable net increase** of a criteria pollutant for which the region is in non-attainment to result in a significant air quality impact. According to guidance of the South Coast Air Quality Management District (SCAQMD), a cumulatively considerable net increase occurs when a project exceeds the regional thresholds set by SCAQMD.¹ As described below, the Project's regional emissions do not exceed SCAQMD thresholds, and therefore would not result in a cumulatively considerable net increase.

The IS/MND air quality analysis follows SCAQMD CEQA guidance to evaluate both project-level and cumulative air quality impacts within the South Coast Air Basin (Basin). Construction and operational emissions were quantified using the California Emissions Estimator Model (CalEEMod), then compared to SCAQMD's regional significance thresholds for pollutants such as nitrogen oxides (NO_x), reactive organic gases (ROG), particulate matter (PM₁₀ and PM_{2.5}), carbon monoxide (CO), and sulfur oxides (SO_x). The Basin is currently designated as a nonattainment area with respect to the state ozone (O₃), PM₁₀, and PM_{2.5} standards, as well as the federal O₃ and PM_{2.5} standards. The SCAQMD regional thresholds are set to address cumulative air quality issues, establish mass emission limits, and ensure that individual projects do not impede the region's ability to attain or maintain health-protective state and federal ambient air quality standards. Projects that do not exceed these thresholds would not have a cumulative impact in the context of existing and future development within the Basin.²

¹ South Coast Air Quality Management District, *White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution Appendix D*, page D-3, 2003.

² Ibid.

IS/MND Tables 10 and 11, provided below, demonstrate that the Project's construction and operational emissions would not exceed SCAQMD's significance thresholds. Therefore, the Project would not result in a cumulatively considerable increase in criteria pollutant emissions, would not contribute to or worsen existing nonattainment conditions, and would remain consistent with applicable state and federal ambient air quality standards.

Construction Year	Maximum Daily Emissions (pounds per day) ^{1, 2}					
	ROG	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}
2027	3.10	28.03	29.02	0.07	7.36	3.76
2028	58.75	16.24	25.92	0.04	1.50	0.74
Maximum Emissions	58.75	28.03	29.02	0.07	7.36	3.76
SCAQMD Threshold	75	100	550	150	55	150
Threshold Exceeded?	No	No	No	No	No	No

¹ As recommended by the SCAQMD, emissions were calculated using CalEEMod version 2022.1 and the worst-case seasonal maximum daily emissions are reported.

² SCAQMD Rule 403 Fugitive Dust was applied. SCAQMD Rule 403 reduction/credits include: properly maintain mobile and other construction equipment; replace ground cover in disturbed areas quickly; water exposed surfaces three times daily; cover stockpiles with tarps; water all haul roads twice daily; and limit speeds on unpaved roads to 15 miles per hour. Reductions percentages from the SCAQMD CEQA Handbook (Tables XI-A through XI-E) were applied.

ROG = reactive organic gases; NO_x = nitrogen oxides; CO = carbon monoxide; SO₂ = sulfur dioxide; PM₁₀ = coarse particulate matter; PM_{2.5} = fine particulate matter; SCAQMD = South Coast Air Quality Management District

Source: CalEEMod version 2022.1. Refer to IS/MND Appendix A for the model outputs.

Source	Maximum Daily Emissions (pounds per day)					
	ROG	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}
Area ¹	3.44	0.04	4.79	<0.01	0.01	0.01
Energy ¹	0.00	0.00	0.00	0.00	0.00	0.00
Mobile – Trucks ¹	0.12	5.76	2.51	0.05	2.01	0.60
Mobile – Passenger Vehicles ¹	0.44	0.35	3.96	0.01	1.08	0.28
Emergency Fire Pump	0.11	0.08	0.05	<0.01	0.01	0.01
Off-Road Forklifts	0.04	0.23	3.21	<0.01	0.01	0.01
Total²	4.16	6.46	14.52	0.07	3.12	0.90
SCAQMD Threshold	55	55	550	150	150	55
Threshold Exceeded?	No	No	No	No	No	No

¹ As recommended by the SCAQMD, emissions were calculated using CalEEMod version 2022.1 and the worst-case seasonal maximum daily emissions are reported.

² Totals may not add up exactly due to rounding in the modeling calculations.

ROG = reactive organic gases; NO₂ = nitrogen dioxide; CO = carbon monoxide; SO₂ = sulfur dioxide; PM₁₀ = coarse particulate matter; PM_{2.5} = fine particulate matter; SCAQMD = South Coast Air Quality Management District PM₁₀ = particulate matter 10 microns in diameter or less; PM_{2.5} = particulate matter 2.5 microns in diameter or less; SCAQMD = South Coast Air Management District

Source: CalEEMod version 2022.1. Refer to IS/MND Appendix A for the model outputs.

As noted on IS/MND page 47, the Project's operational emissions conservatively do not account for the emissions reduction associated with existing conditions at the project site. Under existing conditions, the site is currently developed with an approximately 85,700-square-foot business park. The existing business park currently generates 634 daily vehicle trips. As the proposed Project would generate 212 trips, the Project would result in a net decrease of 422 trips given that office uses involve more daily trips than industrial uses.

Further, as shown below, **Table A: Project Operational Emissions with Existing Conditions** has been provided for informational purposes to identify emissions associated with the existing business park, as well as the Project's net emissions. As shown in **Table A**, the Project would result in a net decrease in ROG, CO, SO₂, PM₁₀, and PM_{2.5} when compared to the existing business park emissions. Although the Project would generate a slight increase in NO_x when compared to the existing business park, the net increase in NO_x would remain far below the SCAQMD regional threshold. Therefore, the Project would primarily improve regional air quality when compared to the existing business park.

Regarding the commenters' concern about the Project increasing PM_{2.5} emissions, **Table A** shows that the Project would result in a net decrease of 2.28 pounds per day of PM_{2.5} when compared to the existing business park. Therefore, the Project would improve PM_{2.5} emissions in the vicinity of the project site.

Table A: Project Operational Emissions with Existing Conditions Considered

Source	Maximum Daily Emissions (pounds per day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Existing Business Park¹						
Area	2.69	0.03	3.74	0.00	0.01	0.01
Energy	0.03	0.59	0.49	0.00	0.04	0.04
Mobile – Trucks	0.05	2.44	1.06	0.02	0.85	0.25
Mobile – Passenger Vehicles	1.82	1.47	16.43	0.05	4.50	1.16
<i>Total²</i>	4.59	4.53	21.72	0.07	5.40	1.46
Proposed Project³						
Area	3.44	0.04	4.79	<0.01	0.01	0.01
Energy	0.00	0.00	0.00	0.00	0.00	0.00
Mobile – Trucks	0.12	5.76	2.51	0.05	2.01	0.60
Mobile – Passenger Vehicles	0.44	0.35	3.96	0.01	1.08	0.28
Emergency Fire Pump	0.11	0.08	0.05	<0.01	0.01	0.01
Off-Road Forklifts	0.04	0.23	3.21	<0.01	0.01	0.01
<i>Total</i>	4.16	6.46	14.52	0.07	3.12	0.90
Net Emissions	-0.43	1.93	-7.20	0.00	-2.28	-0.56
SCAQMD Threshold	55	55	550	150	150	55
Threshold Exceeded?	No	No	No	No	No	No

¹ As recommended by the SCAQMD, emissions were calculated using CalEEMod version 2022.1 and the worst-case seasonal maximum daily emissions are reported.

² Totals may not add up exactly due to rounding in the modeling calculations.

³ The proposed Project emissions are shown in IS/MND Table 11: Project Operational Emissions, provided above for reference.

ROG = reactive organic gases; NO₂ = nitrogen dioxide; CO = carbon monoxide; SO₂ = sulfur dioxide; PM₁₀ = coarse particulate matter; PM_{2.5} = fine particulate matter; SCAQMD = South Coast Air Quality Management District PM₁₀ = particulate matter 10 microns in diameter or less; PM_{2.5} = particulate matter 2.5 microns in diameter or less; SCAQMD = South Coast Air Management District

Source: CalEEMod version 2022.1. Refer to **Attachment B** for the Existing Business Park model outputs.

Diesel Particulate Matter

Although CalEnviroScreen indicates that diesel particulate matter (DPM) concentrations in the vicinity of the project site are relatively high due to existing regional and corridor-related emission sources, the proposed Project would not result in a cumulatively considerable contribution to DPM impacts under CEQA. CEQA requires an evaluation of whether a project would make a meaningful incremental contribution to an existing environmental burden, rather than a determination based solely on elevated background conditions.

SCAQMD CEQA guidance uses truck activity levels as a screening tool to determine when warehouse operations may constitute a substantial long-term source of DPM warranting a refined mobile-source toxics analysis. Warehouses with low truck volumes are unlikely to generate DPM emissions at levels that would result in cancer risks or non-cancer hazard indices exceeding SCAQMD significance thresholds at nearby sensitive receptors. Consistent with this guidance, projects operating below the 100-truck-per-day screening level are generally considered to result in less than significant toxic air contaminant impacts, and preparation of a quantitative health risk assessment would not provide meaningful additional information for CEQA decision-making. The Project would generate 66 daily truck trips. Given that the Project would generate fewer than 100 daily truck trips, its incremental contribution to DPM emissions would be minimal relative to the existing and regional mobile-source emissions that influence CalEnviroScreen scores. Accordingly, the Project would not meaningfully increase local or cumulative DPM exposure, and its contribution would not be cumulatively considerable even in an area with elevated existing DPM levels. Project-generated DPM is addressed on IS/MND page 52.

IS/MND versus EIR Determination

The comment letter asserts that preparation of an EIR is required and speculates that the Project may result in significant cumulative air quality impacts, citing CalEnviroScreen percentile scores and community health vulnerabilities within the applicable census tract. However, as noted above, CalEnviroScreen provides relative, census tract-level rankings based on a composite of environmental, public health, and socioeconomic indicators, and it does not quantify project-specific emissions, model localized pollutant concentrations, or establish CEQA thresholds of significance.

CEQA requires preparation of an EIR only where substantial evidence in the record supports a fair argument that the project itself may result in a significant environmental impact that cannot be mitigated to a less than significant level (CEQA Guidelines §§ 15064(f)(1), 15070). Only if mitigation will not reduce potential impacts to a less than significant level would an EIR be required. Courts have consistently held that speculation, unsubstantiated opinion, or evidence that does not relate to a project's actual environmental effects does not constitute substantial evidence under the fair argument standard (CEQA Guidelines § 15384(a), (b)). High background pollution levels or generalized community health data, without evidence of a project-related exceedance of an applicable regulatory standard, are insufficient to require preparation of an EIR.

As detailed in Section 4.3, Air Quality of the IS/MND, Project construction and operation would not result in significant increases in criteria pollutants or diesel particulate matter. As the Project would not exceed SCAQMD thresholds, it would not worsen existing nonattainment conditions in the Basin and would remain consistent with applicable state and federal ambient air quality standards. Therefore, an IS/MND is appropriate, and a full EIR is not required.

Summary

- The Project would result in a net decrease in ROG, CO, SO₂, PM₁₀, and PM_{2.5} emissions when compared to existing conditions.
- Project NOx emissions would only increase slightly above existing conditions but remain far below the SCAQMD's significance threshold.
- SCAQMD's significance thresholds were developed to identify if an individual project could potentially affect cumulative air quality conditions. Their thresholds are the level at which mitigation should be implemented. The Project would not exceed SCAQMD's thresholds. Emissions below SCAQMD thresholds would not contribute to a cumulatively considerable net increase.
- CalEnviroScreen is not used to determine CEQA impacts. CalEnviroScreen is used to prioritize funding.
- CEQA requires an evaluation of a project's incremental contribution to an existing environmental burden (i.e., increase over existing conditions). CEQA impacts are not based solely on elevated background conditions.

Attachments:

A: SAFER Comment Letter (December 9, 2025)

B: Existing Business Park CalEEMod Results

Attachment A: SAFER Comment Letter (December 9, 2025)

VIA EMAIL

T 510.836.4200
F 510.836.4205

1939 Harrison Street, Ste. 150
Oakland, CA 94612

www.lozeaudrury.com
kylah@lozeaudrury.com

December 9, 2025

Arnel Dino, Chair
Patricia Tutor, Vice Chair
Oscar Valadez, Commissioner
Erik Wehn, Commissioner
Megan Fleenor, Commissioner
Planning Commission
303 West Commonwealth Ave
Fullerton, CA 92832-1775
Janet.Ragland@cityoffullerton.com

David Lopez, Senior Planner
Planning Division
City of Fullerton
303 West Commonwealth Avenue
Fullerton, CA 92382
david.lopez@cityoffullerton.com

**Re: Comment on the Initial Study (IS) and Mitigated Negative Declaration (MND) for the Cedarwoods Fullerton Project (PRJ2025-0005, LRP-2025-0011, ZON-2025-0013, SCH 2025110235) December 10, 2025
Planning Commission Hearing Agenda Item No. 2.**

Dear Chair Dino, Vice Chair Tutor, Honorable Commissioners, and Planner Lopez:

This correspondence is submitted on behalf of Supporters Alliance for Environmental Responsibility ("SAFER") and its members living and/or working in and around the City of Fullerton ("City") regarding the Cedarwoods Fullerton Project (SCH 2025110235) ("Project") and the proposed adoption of the Initial Study and Mitigated Negative Declaration ("IS/MND") prepared for the Project.

For the reasons discussed below SAFER is concerned that the IS/MND is improper under the California Environmental Quality Act ("CEQA") due to its failure to adequately assess and mitigate the Project's potentially significant environmental impacts. SAFER requests that an environmental impact report (EIR) be prepared for the Project rather than an MND because there is a fair argument that the Project may have significant, adverse air quality impacts. An EIR will ensure that the potentially significant impacts of this Project are fully disclosed, analyzed, and mitigated.

PROJECT DESCRIPTION

The Project proposes the construction of a 110,232 square-foot warehouse/distribution facility on a 4.79-acre site located at 2461-2495 East Orangethorpe Avenue in the City of Fullerton. The Project would include a truck court with 15 dock doors and 91 passenger vehicle

parking stalls. The Project would also involve the demolition of a pre-existing business park consisting of five buildings totaling approximately 85,700 square feet.

LEGAL STANDARD

As the California Supreme Court has held “[i]f no EIR has been prepared for a nonexempt project, but substantial evidence in the record supports a fair argument that the project may result in significant adverse impacts, the proper remedy is to order preparation of an EIR.” (*Communities for a Better Env’t v. South Coast Air Quality Mgmt. Dist.* (2010) 48 Cal.4th 310, 319-320 [citing *No Oil, Inc. v. City of Los Angeles* (1974) 13 Cal.3d 68, 75, 88; *Brentwood Assn. for No Drilling, Inc. v. City of Los Angeles* (1982) 134 Cal.App.3d 491, 504-505].) “Significant environmental effect” is defined very broadly as “a substantial or potentially substantial adverse change in the environment.” (Pub. Res. Code § 21068; *see also* 14 Cal. Code Regs. § 15382.)

The EIR is the very heart of CEQA. *Bakersfield Citizens for Local Control v. City of Bakersfield* (2004) 124 Cal.App.4th 1184, 1214 (*Bakersfield Citizens*); *Pocket Protectors v. City of Sacramento* (2004) 124 Cal.App.4th 903, 927. The EIR is an “environmental ‘alarm bell’ whose purpose is to alert the public and its responsible officials to environmental changes before they have reached the ecological points of no return.” (*Bakersfield Citizens*, 124 Cal.App.4th at 1220.) The EIR also functions as a “document of accountability,” intended to “demonstrate to an apprehensive citizenry that the agency has, in fact, analyzed and considered the ecological implications of its action.” (*Laurel Heights Improvements Assn. v. Regents of Univ. of Cal.* (1988) 47 Cal.3d 376, 392.) The EIR process “protects not only the environment but also informed self-government.” (*Pocket Protectors*, 124 Cal.App.4th at 927.)

Where an initial study shows that the project may have a significant effect on the environment, a mitigated negative declaration may be appropriate. However, a mitigated negative declaration is proper *only* if the project revisions would avoid or mitigate the potentially significant effects identified in the initial study “to a point where clearly no significant effect on the environment would occur, and...there is no substantial evidence in light of the whole record before the public agency that the project, as revised, may have a significant effect on the environment.” (PRC §§ 21064.5 and 21080(c)(2); *Mejia v. City of Los Angeles* (2005) 130 Cal.App.4th 322, 331.) In that context, “may” means a reasonable possibility of a significant effect on the environment. (PRC §§ 21082.2(a), 21100, 21151(a); *Pocket Protectors*, 124 Cal.App.4th at 927; *League for Protection of Oakland’s etc. Historic Res. v. City of Oakland* (1997) 52 Cal.App.4th 896, 904-05.)

Under the “fair argument” standard, an EIR is required if any substantial evidence in the record indicates that a project may have an adverse environmental effect—even if contrary evidence exists to support the agency’s decision. (14 Cal. Code Regs § 15064(f)(1); *Pocket Protectors*, 124 Cal.App.4th at 931; *Stanislaus Audubon Society v. County of Stanislaus* (1995) 33 Cal.App.4th 144, 150-51; *Quail Botanical Gardens Found., Inc. v. City of Encinitas* (1994) 29 Cal.App.4th 1597, 1602.) The “fair argument” standard creates a “low threshold” favoring environmental review through an EIR rather than through issuance of negative declarations or

notices of exemption from CEQA. (*Pocket Protectors*, 124 Cal.App.4th at 928.) The “fair argument” standard is virtually the opposite of the typical deferential standard accorded to agencies. As a leading CEQA treatise explains:

This ‘fair argument’ standard is very different from the standard normally followed by public agencies in making administrative determinations. Ordinarily, public agencies weigh the evidence in the record before them and reach a decision based on a preponderance of the evidence. [Citations]. The fair argument standard, by contrast, prevents the lead agency from weighing competing evidence to determine who has a better argument concerning the likelihood or extent of a potential environmental impact. The lead agency’s decision is thus largely legal rather than factual; it does not resolve conflicts in the evidence but determines only whether substantial evidence exists in the record to support the prescribed fair argument. (Kostka & Zishcke, *Practice Under CEQA*, §6.29, pp. 273–74.)

The Courts have explained that “it is a question of law, not fact, whether a fair argument exists, and the courts owe no deference to the lead agency’s determination. Review is *de novo*, with a preference for resolving doubts in favor of environmental review.” (*Pocket Protectors*, 124 Cal.App.4th at 928 [emphasis in original].).

DISCUSSION

I. The Project May Have Significant Cumulative Air Quality Impacts Requiring the Preparation of an EIR.

An MND is not appropriate for this Project because it may result in significant cumulative air quality impacts. According to the Office of Environmental Health Hazard Assessment’s (OEHHA) CalEnviroScreen Communities Environmental Health Screening Tool, the census tract where the Project is located has a pollution burden of 88, meaning residents in this tract bear a higher pollution burden than 88 percent of tracts in the state. (Exhibit A.)¹ For diesel particulate matter (“DPM”), a toxic air contaminant, the Project location is worse than 84 percent of other census tracts in the state. (Exhibit B.) Diesel trucks, like those to be used during the construction and operation of the Project, are a major source of DPM emissions. (Exhibit B.) Exposure to DPM is known to cause serious health problems, such as heart and lung disease and lung cancer. (Exhibit B.) For PM2.5, the Project location is worse than 88 percent of other census tracts in the state. (Exhibit C.) Exposure to PM2.5 is associated with heart and lung disease and asthma. (Exhibit C.) These health impacts are important to consider given that the census tract where the site is located is in the 49th percentile for asthma disease, meaning it is higher than 49 percent of the census tracts in California. (Exhibit D.)

Within this setting, the Project will contribute to the already harmful air quality conditions in the surrounding area. This is a potentially significant cumulative impact. Thus, this impact must be properly analyzed and mitigated in an EIR..

¹ CalEnviroScreen is available at:

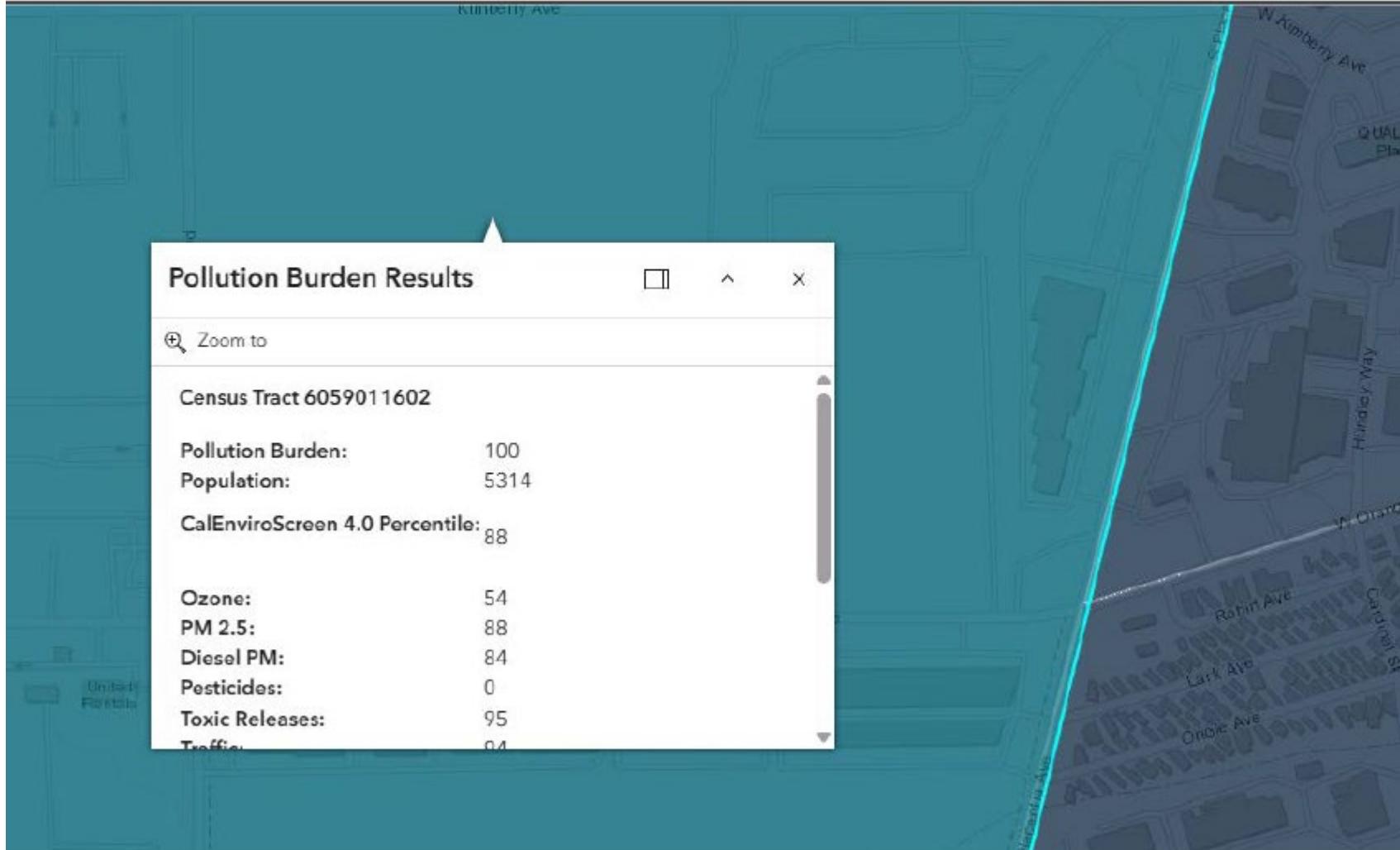
<https://experience.arcgis.com/experience/ed5953d89038431dbf4f22ab9abfe40d/>

CONCLUSION

SAFER respectfully requests that the Planning Commission direct staff to prepare an EIR for the Project in order to analyze and mitigate the Project's potentially significant impacts as well as ensure compliance with CEQA. SAFER reserves the right to supplement this comment throughout the administrative process. *Galante Vineyards v. Monterey Peninsula Water Management Dist.*, 60 Cal. App. 4th 1109, 1121 (1997).

Sincerely,

Kylah Staley
Lozeau | Drury LLP


****Note Exhibits A, B, and C from the comment letter have been consolidated and are presented on the following pages in consecutive order to streamline documentation.***

CalEnviroScreen 4.0 Indicator Maps

Pollution Burden Results

Census Tract 6059011602

Pollution Burden:	100
Population:	5314
CalEnviroScreen 4.0 Percentile:	88
Ozone:	54
PM 2.5:	88
Diesel PM:	84
Pesticides:	0
Toxic Releases:	95
Traffic:	0.4

CalEnviroScreen 4.0 Indicator Maps

What is diesel particulate matter?

Exhaust from trucks, buses, trains, ships and other equipment with diesel engines contains a mixture of gases and solid particles. These solid particles are known as diesel particulate matter (diesel PM). Diesel PM contains hundreds of different chemicals. Many of these are harmful to health. The highest levels of diesel PM are near ports, rail yards and freeways.

The particles in diesel PM can reach deep into the lung, where they can contribute to health problems including eye, throat and nose irritation, heart and lung disease, and lung cancer. Children and the elderly are most sensitive to the effects of diesel PM.

More information can be found in the [Diesel PM chapter](#) in the CalEnviroScreen 4.0 report and the [Diesel PM indicator page](#).

Diesel Particulate Matter Results

Zoom to

Census Tract 6059011602 has 5,314 people.

This indicator represents how much diesel particulate matter (PM) is emitted into the air within and near the populated parts of the census tracts. The data is from 2016.

Sources of diesel PM within and nearby the populated parts of this census tract emit **0.387 tons per year**. The diesel PM percentile for this census tract is **84**, meaning it is higher than **84%** of the census tracts in California.

Diesel emissions in California range between **0 - 15 tons per year**.

Kimberly Ave.

E Orangehorpe Ave

CalEnviroScreen 4.0 Indicator Maps

What is PM2.5?

Particulate matter or PM2.5 is very small airborne particle pollution, less than 2.5 micrometers, which is less than the thickness of a human hair. PM2.5 is a mixture of particles that can include organic chemicals, dust, soot and metals.

These particles can come from cars and trucks, factories, wood burning, and other activities. They can travel deep into the lungs because they are so small and cause various health problems including heart and lung disease.

Children, the elderly, and people suffering from heart or lung disease, asthma, or chronic illness are most sensitive to the effects of PM2.5 exposure.

More information can be found in the [PM2.5 chapter](#) in the CalEnviroScreen 4.0 report and the [PM2.5 indicator page](#).

PM 2.5 Indicator Results

Zoom to

Census Tract 6059011602 has 5,314 people.

The indicator represents the average concentration of fine particulate matter, or PM2.5, in the air. The data is from 2015 to 2017.

This census tract has a concentration of **12.18** micrograms per meter cubed (**12.18 $\mu\text{g}/\text{m}^3$**). The PM2.5 percentile for this census tract is **88**, meaning it is higher than **88%** of the census tracts in California.

PM2.5 concentrations in California range between **1.9 - 16.4 $\mu\text{g}/\text{m}^3$** .

This page intentionally left blank

Attachment B: Existing Business Park CalEEMod Results

Existing Conditions_Cedarwoods Fullerton Custom Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

8. User Changes to Default Data

8.1. Justifications

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Existing Conditions_Cedarwoods Fullerton
Operational Year	2028
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	1.8
Precipitation (days)	21
Location	33.860394162202326, -117.8862153208604
County	Orange
City	Fullerton
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5700
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.35

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
General Office Building	46	1000sqft	1.5	46,000	18,777	—	—	—
Parking Lot	2.4	Acre	2.4	0.00	0.00	—	—	—

Industrial Park	40	1000sqft	0.92	40,000	0.00	—	—	—	—
-----------------	----	----------	------	--------	------	---	---	---	---

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Unmit.	5.0	4.6	4.3	22	0.07	0.11	5.3	5.4	0.11	1.4	1.5
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Unmit.	4.3	4.0	4.5	17	0.07	0.10	5.3	5.4	0.10	1.4	1.5
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—
Unmit.	4.8	4.4	4.6	20	0.07	0.11	5.2	5.3	0.10	1.3	1.4
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.87	0.80	0.83	3.6	0.01	0.02	0.95	0.97	0.02	0.24	0.26

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Mobile	2.2	1.9	3.7	17	0.07	0.06	5.3	5.3	0.06	1.4	1.4
Area	2.7	2.7	0.03	3.7	< 0.005	0.01	—	0.01	0.01	—	0.01
Energy	0.06	0.03	0.59	0.49	< 0.005	0.04	—	0.04	0.04	—	0.04

Water	—	—	—	—	—	—	—	—	—	—	—	—
Waste	—	—	—	—	—	—	—	—	—	—	—	—
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—
Total	5.0	4.6	4.3	22	0.07	0.11	5.3	5.4	0.11	1.4	1.5	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	2.2	1.9	3.9	16	0.07	0.06	5.3	5.3	0.06	1.4	1.4	
Area	2.1	2.1	—	—	—	—	—	—	—	—	—	—
Energy	0.06	0.03	0.59	0.49	< 0.005	0.04	—	0.04	0.04	—	0.04	
Water	—	—	—	—	—	—	—	—	—	—	—	—
Waste	—	—	—	—	—	—	—	—	—	—	—	—
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—
Total	4.3	4.0	4.5	17	0.07	0.10	5.3	5.4	0.10	1.4	1.5	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	2.2	1.8	4.0	17	0.07	0.06	5.2	5.3	0.06	1.3	1.4	
Area	2.5	2.5	0.02	2.6	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	
Energy	0.06	0.03	0.59	0.49	< 0.005	0.04	—	0.04	0.04	—	0.04	
Water	—	—	—	—	—	—	—	—	—	—	—	—
Waste	—	—	—	—	—	—	—	—	—	—	—	—
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—
Total	4.8	4.4	4.6	20	0.07	0.11	5.2	5.3	0.10	1.3	1.4	
Annual	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.40	0.34	0.72	3.0	0.01	0.01	0.95	0.96	0.01	0.24	0.25	
Area	0.46	0.46	< 0.005	0.47	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	—	0.01	0.01	—	0.01	
Water	—	—	—	—	—	—	—	—	—	—	—	—
Waste	—	—	—	—	—	—	—	—	—	—	—	—
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—
Total	0.87	0.80	0.83	3.6	0.01	0.02	0.95	0.97	0.02	0.24	0.26	

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	0.18	0.05	2.4	1.1	0.02	0.03	0.82	0.85	0.03	0.22	0.25
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial Park	2.0	1.8	1.4	16	0.05	0.03	4.5	4.5	0.02	1.1	1.2
Total	2.2	1.9	3.7	17	0.07	0.06	5.3	5.3	0.06	1.4	1.4
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	0.18	0.05	2.4	1.1	0.02	0.03	0.82	0.85	0.03	0.22	0.25
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial Park	2.0	1.8	1.5	15	0.04	0.03	4.5	4.5	0.02	1.1	1.2
Total	2.2	1.9	3.9	16	0.07	0.06	5.3	5.3	0.06	1.4	1.4
Annual	—	—	—	—	—	—	—	—	—	—	—
General Office Building	0.03	0.01	0.45	0.19	< 0.005	0.01	0.15	0.15	0.01	0.04	0.05
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial Park	0.36	0.33	0.27	2.8	0.01	< 0.005	0.80	0.81	< 0.005	0.20	0.21
Total	0.40	0.34	0.72	3.0	0.01	0.01	0.95	0.96	0.01	0.24	0.25

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—

General Office Building	0.03	0.02	0.31	0.26	< 0.005	0.02	—	0.02	0.02	—	0.02
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00
Industrial Park	0.03	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02
Total	0.06	0.03	0.59	0.49	< 0.005	0.04	—	0.04	0.04	—	0.04
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	0.03	0.02	0.31	0.26	< 0.005	0.02	—	0.02	0.02	—	0.02
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00
Industrial Park	0.03	0.01	0.27	0.23	< 0.005	0.02	—	0.02	0.02	—	0.02
Total	0.06	0.03	0.59	0.49	< 0.005	0.04	—	0.04	0.04	—	0.04
Annual	—	—	—	—	—	—	—	—	—	—	—
General Office Building	0.01	< 0.005	0.06	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00
Industrial Park	0.01	< 0.005	0.05	0.04	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005
Total	0.01	0.01	0.11	0.09	< 0.005	0.01	—	0.01	0.01	—	0.01

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	1.8	1.8	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.23	0.23	—	—	—	—	—	—	—	—	—

Landscape Equipment	0.67	0.61	0.03	3.7	< 0.005	0.01	—	0.01	0.01	—	0.01
Total	2.7	2.7	0.03	3.7	< 0.005	0.01	—	0.01	0.01	—	0.01
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	1.8	1.8	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.23	0.23	—	—	—	—	—	—	—	—	—
Total	2.1	2.1	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	0.34	0.34	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.04	0.04	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.08	0.08	< 0.005	0.47	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005
Total	0.46	0.46	< 0.005	0.47	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—

Industrial Park	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—	—
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
General Office Building	—	—	—	—	—	—	—	—	—	—	—
Industrial Park	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—

Subtotal	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Office Building	28	28	28	10,218	929	929	929	339,251
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial Park	606	606	606	221,190	6,317	6,317	6,317	2,305,639

5.10. Operational Area Sources

5.10.1. Hearths

Land Use	Hearth Type	Unmitigated (number)	Mitigated (number)
General Office Building	Wood Fireplaces	0	0
General Office Building	Gas Fireplaces	0	0

General Office Building	Propane Fireplaces	0	0
General Office Building	Electric Fireplaces	0	0
General Office Building	No Fireplaces	0	0
General Office Building	Conventional Wood Stoves	0	0
General Office Building	Catalytic Wood Stoves	0	0
General Office Building	Non-Catalytic Wood Stoves	0	0
General Office Building	Pellet Wood Stoves	0	0
Parking Lot	Wood Fireplaces	0	0
Parking Lot	Gas Fireplaces	0	0
Parking Lot	Propane Fireplaces	0	0
Parking Lot	Electric Fireplaces	0	0
Parking Lot	No Fireplaces	0	0
Parking Lot	Conventional Wood Stoves	0	0
Parking Lot	Catalytic Wood Stoves	0	0
Parking Lot	Non-Catalytic Wood Stoves	0	0
Parking Lot	Pellet Wood Stoves	0	0
Industrial Park	Wood Fireplaces	0	0
Industrial Park	Gas Fireplaces	0	0
Industrial Park	Propane Fireplaces	0	0
Industrial Park	Electric Fireplaces	0	0
Industrial Park	No Fireplaces	0	0
Industrial Park	Conventional Wood Stoves	0	0
Industrial Park	Catalytic Wood Stoves	0	0
Industrial Park	Non-Catalytic Wood Stoves	0	0
Industrial Park	Pellet Wood Stoves	0	0

5.10.2. Architectural Coatings

—	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
undefined	0.00	0.00	129,000	43,000	6,273

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
General Office Building	819,733	532	0.0330	0.0040	1,165,938
Parking Lot	91,581	532	0.0330	0.0040	0.00
Industrial Park	712,811	532	0.0330	0.0040	1,013,859

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Office Building	8,175,752	243,357
Parking Lot	0.00	0.00
Industrial Park	9,250,000	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Office Building	43	0.00
Parking Lot	0.00	0.00
Industrial Park	50	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.0	4.0	18
Industrial Park	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.0	4.0	18

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

8. User Changes to Default Data

8.1. Justifications

Screen	Justification
Land Use	Existing conditions.
Construction: Construction Phases	per client questionnaire
Construction: Off-Road Equipment	trenching equipment assumed for infrastructure improvements
Operations: Vehicle Data	Per Trip Generation prepared by Kimley-Horn and Associates, Inc. (2025) general office building trips = truck trips industrial park trips = passenger vehicle trips
Operations: Fleet Mix	Per Trip Generation prepared by Kimley-Horn and Associates, Inc. (2025) and Fleet Mix from the WSP Truck Trip Generation Study (2017) general office building trips = truck trips industrial park trips = passenger vehicle trips